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Abstract— We present an automated directed random input
stimulus generation algorithm with high coverage for nonlinear
analog circuits. Our methodology is able to generate input
stimuli to meet two kinds of objectives: (i) to reach user-
defined goal regions and (ii) increased coverage of state space.
The principal benefit of our approach is that it can provide
directed input stimulus generation, as opposed to the randomly
generated input stimulus by Monte Carlo-based methods. The
methodology introduces Multiple Objective Rapidly-exploring
Random Trees (MORRTs), which add a bias and a feedback
loop to the standard RRT algorithm. The biasing is provided by
a statistical inference algorithm. Simultaneous biasing towards
goal regions and coverage is possible in MORRT to a user-defined
extent. Our methodology generates several input stimuli that are
concentrated in the goals or relevant operating regions, while
providing high coverage of the state space. We demonstrate the
efficiency and scalability of our approach on high-dimensional
analog case studies.

Index Terms— Directed input stimulus generation, Rapidly-
exploring Random Trees, Nonlinear analog circuits.

I. INTRODUCTION

Analog circuits represent a large percentage of the chips
used in mobile computing, communication devices, electric
vehicles, and portable medical equipment today [1]. This
trend is projected to grow in the future [1]. The analog IC
market is expected to expand with the increasing demand for
portable and wearable devices, smartphones, and low-power
electronics [1]. Analog chips are increasingly being used in
medical devices and electric vehicles [1], where safety and
reliability are critical concerns.

Verification and validation of the behavior of these complex
and safety critical circuits is a daunting challenge. The com-
plexity of the circuits has increased significantly beyond that
of the hand-crafted, isolated analog circuits of the past. Tra-
ditionally, the practice in pre-silicon and post-silicon analog
validation has been to use input stimuli manually generated
by the designer of the circuit1. However, given the scale
and complexity of the analog components used in modern
devices, that process is inefficient, expensive, error-prone, and
frequently misleading in predicting unknown behaviors, worst
case corners and stressing weak components of the circuit.
Hence, automated input stimulus generation for analog circuits
has been identified as a critical need in the analog design and
validation process [2].

In this work, we present an automatic directed input
stimulus generation technique for validating nonlinear analog
circuits. Ours is a simulation based approach that can be used
to exercise interesting or relevant behaviors of the circuit in
a targeted manner. Goals such as operating modes of active

1We use the terms input stimuli and test cases interchangeably in this paper.

components, stable operating states, failure regions, stressing
interconnects, equilibrium states, and other relevant behavior
can be triggered using our approach. These goals can be user
specified or automatically inferred by our algorithm. Input
stimuli that can reach these goal regions are then generated.
Coverage goals can also be specified in our algorithm, such
that the generated input stimuli can meet them. We define
coverage as uniformity of the visited states in the reachable
state space.

A. Motivation

We motivate the reasons to generate input stimuli automat-
ically, as well as the reasons to prefer directed stimuli over
random stimuli in analog validation. Our intended use case for
this technology is in pre-Silicon and post-Silicon validation, as
a replacement to random Monte Carlo simulations. In current
practice, three types of input stimuli are applied to the netlist.
The first is generic stimuli from the design house’s repository
of standard stimuli for the circuit, like applying a sine input
to an opamp circuit. The second input stimuli are random
Monte Carlo simulations to check for behaviors under different
operating conditions. The designer then manually writes test
benches designed specifically to check the circuit’s corner case
behavior and functionality.

In this process, neither the first nor second set of stimuli
are capable of exciting corner cases and critical functionality.
The most complex part of the verification is done manually.
While this was acceptable in the era where analog was
relegated to a few standard, non-integrated circuits such as
small amplifiers and regulators, etc., such custom crafting of
verification artifacts cannot scale to today’s systems. Today,
analog and mixed signal chips form a majority of modern
systems-on-a-chip (SoCs). The iPhone-6 has 27 chips, 20
of which are analog/mixed signal. [3]. Automated stimulus
generation, is therefore, a critical need for current and future
analog and mixed signal designs.

In current practice, the automated part of the verification is
in the second type of stimuli, i.e. Monte Carlo simulations [4]
[5]. Monte Carlo based methods simulate the circuit using
randomly generated inputs. They do not take into account
the circuit structure, topology, or state space to target their
simulations. On the other hand, directed simulation can focus
the simulations to expected or known objectives that capture
the desired functionality. Objectives can be simple, such as
reaching a specific state (say equilibrium), output saturation
or safety. Objectives can also be complex behavior-based,
like locking, operating regions of active elements, stressing
interconnects, etc. Objectives are especially useful during IP
integration, where generating stimuli for integrating a netlist
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into an SoC is a complex problem. For instance, if unsafe re-
gions (e.g. overshooting voltages or excessive current through
the IO) in the interface between the SoC and analog netlist are
set as goal objectives, an input stimulus can be generated to
check for erroneous behavior. This is an increasingly common
practical scenario. In the absence of objective based directed
inputs, random stimuli may not even reach the desired objec-
tives within acceptable time and resource limits. We believe
that this significant chasm in the analog and mixed signal
verification process can be bridged by introducing directed
stimulus generation. In order for analog verification to scale
to the designs of the future with numerous and complex analog
components, directed simulations are critically important. To
calibrate, in digital circuits, directed input stimuli form the
majority of the pre-silicon verification process. Random stim-
uli are introduced much later for simulating unexpected or
corner case scenarios, and aborted after a pre-decided number
of cycles.

Our approach is based on Rapidly-exploring Random Trees
(RRTs). The RRT algorithm is a random tree simulation,
which, in contrast to the random walk simulation of Monte
Carlo methods, is able to branch from any previously sim-
ulated state. The RRT can be manipulated to provide local
direction concerning which state the simulation should branch
from next, as well as global direction concerning which region
in the state space the simulation should be directed. The RRT
tracks the states it has visited so far by maintaining a tree
data structure that it updates every iteration. The classic RRT
grows the tree structure by sampling states from a uniform
distribution over the state space. In [6], we augmented the
RRT with a time dimension, to be able to generate time-variant
transient input stimuli. For this work, we will use these time
augmented RRTs.

In [7], we introduced goal-orientedness in analog input
stimulus generation. In this work, we have developed that idea
further into a directed input stimulus generation methodology
that can simultaneously optimize for goals as well as cov-
erage. We also propose in this work, Multi-Objective RRTs
(MORRTs), which introduce a biasing and feedback loop into
the regular RRTs, to bias the growth of the RRTs towards a
goal and/or a coverage objective. Traditional RRTs simulate
the next state by sampling from a default uniform distribution
of states. With MORRTs, we provide alternate distributions
for the RRT to sample from. These alternate distributions are
biased in favor of goal regions and/or increased coverage.
While in [7] we used a clustering algorithm, in this work, we
infer these goal and coverage distributions automatically using
Variational Bayesian inference (VBI)[8], a statistical inferenc-
ing algorithm. The VBI algorithm infers a goal distribution
from an initial learning phase where it samples states from
the user defined or frequently occurring states. It infers a
coverage distribution by analyzing the state space distribution
of the previously visited states of the MORRT. This provides
an integrated methodology to generate high coverage input
stimulus directed towards goal regions.

We demonstrate that the MORRT algorithm is able to
generate tests in goal regions significantly better than Monte
Carlo. It takes the random Monte Carlo simulations 199×
more iterations and 188× more time to reach the goal regions,

as compared to our directed approach. The time overhead
incurred in every iteration is higher for the MORRT than
Monte Carlo, but we show that it is no greater than 22% in
our experimental results. The computational overhead in the
MORRT is because of i) inferring the goal distribution, and
ii) searching for the closest node to the desired goals. The
MORRT stores context through a data structure that represents
the visited state space. The memory overhead as a result of
maintaining this data structure is not significant.

We present extensive and detailed experimental results on
several circuits. We used a Josephson junction circuit, an
OP-amp and a high-speed VCO circuit. The op-amp is an
8-dimensional CMOS circuit. The VCO netlist is extracted
from the post-layout circuit. We demonstrate that our learning
strategy with VBI is able to identify the goal regions effec-
tively. We also show that the input stimuli generated by the
MORRT algorithm are more efficient than the traditional RRT
in achieving objectives. For the Josephson junction circuit,
we obtained several stimuli cases that drove the circuit into
undesirable states. Such undesirable behavior is known to
be hard to detect using conventional test-generation methods
[9]. We also demonstrate that our tests can validate correct
behavior as well as reveal anomalous behavior. Finally, we
quantify the coverage and goal-orientedness of MORRT in
terms of the star discrepancy metric used by [10].

In [7] we used the traditional RRT algorithm for generating
goal-oriented input stimuli for nonlinear analog circuits. We
used a grid-based clustering algorithm to identify the goal
regions and biased the growth of the RRT toward those
regions. Our contributions over [7] are as follows. In this work,
we introduce coverage as an objective for input stimulus gen-
eration along with goals. We introduce the MORRT algorithm
that can qgenerate tests with respect to both high coverage
and goal-orientedness. We introduce a biasing technique based
on a feedback loop in the MORRT algorithm to favor its
growth towards a desirable part of the state space. We use the
variational Bayesian inference algorithm to infer the goal dis-
tribution and coverage distributions. We introduce a parameter
that provides a knob between the goal-orientedness and high
coverage simultaneously. We provide extensive experimental
results including a CMOS circuit (over [7]) that show the
efficacy, efficiency and scale of the MORRT.

II. RELATED WORK

We refer our readers to [11] for an introductory tutorial
and to [12] for a review of the classic works. Researchers
have focused on generating post-silicon tests for nonparametric
testing [13] [14] [15] [16], and parametric fault models [17].
Some techniques use learning algorithms to identify bad
regions [18][17].

Recently, researchers investigated generation of pre-silicon
tests for analog circuits. That problem is closely related to that
of runtime monitoring and falsification of analog and hybrid
systems [19] [20][21][22][23].

The RRT algorithm was originally developed in robotic
motion planning [24]. In the classic RRT, the growth of RRTs
is locally, but not globally, optimal. Several techniques have
tried to address that issue [23][20] [25]. In [19], the authors
propose to introduce LTL properties into RRT to verify safety
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properties of hybrid systems for falsification. [23] use RRT to
generate counter-examples in analog and hybrid systems.

Sample generation in the state space is one of the major
issues in test generation. Dang et al. use RRT with coverage
measurement to improve coverage quality and use RRT to
verify hybrid systems [23].

Our advantage over the current state of the art random
testing algorithms such as Markov Chain Monte Carlo [26]
methods (such as Gibbs sampling [26] or Metropolis-Hastings
algorithm [26]) is that our approach is a directed testing
approach that allows us to control the simulation targets [7]
as well as providing high coverage. As a result, we generate
input stimuli with higher quality. Our algorithm can be fine
tuned for generating goal-oriented input or coverage-driven
input stimuli. Markov-Chain Monte Carlo doesn’t provide
these degrees of control over the simulation. On the other hand,
similar to Monte Carlo Markov Chain, our algorithm avoids
doubling-back on the states that we have already visited [26].

The MORRT algorithm is an incomplete search method. As
a result, we do not provide an exhaustive search of the state
space. For formal verification, many papers have addressed
exhaustive safety verification through formal verification[27],
reachability analysis [28][29] and simulation-aided verification
[30][31][32]. The reachability analysis algorithm can deter-
mine if the reachable set of the circuit intersects with the
unsafe or the goal region. Formal methods are sound, rigorous
and provide complete guarantee of the result. In comparison
to formal methods, MORRT is efficient, highly scalable and
can generate input stimuli which can be used to falsify the
circuit [6].

III. FRAMEWORK OF OUR AUTOMATED DIRECTED INPUT
STIMULUS GENERATION ALGORITHM

The input to our algorithm is an analog circuit netlist
(MATLAB or HSPICE netlist). We determine the state space
of the circuit by converting it to an ODE [33]. The output of
our algorithm is a set of input stimuli. Each input stimulus
is a piecewise linear input waveform signal that is assigned
to each transient input source in the netlist such as current,
voltage and other transient variable sources that are inputs to
the circuit (Section V-D Figure 4).

Figure 1 shows an overview of our automated directed
input stimulus generation framework. There are three key
components: i) learning, ii) simulation, and iii) input stimulus
generation. The purpose of the learning component is to infer
goal distributions and coverage distributions that the MORRT
simulation phase can sample from. This phase provides the
bias for the subsequent MORRT growth. We use the Varia-
tional Bayesian Inference algorithm (Section IV-C) to infer
the goal distribution and coverage distributions. Goals can
either provided by the user or automatically generated by
our learning algorithm. VBI infers a goal distribution from
set of training states. The training states are generated from
frequently occurring regions in the state space. To determine
coverage distribution, we employ the VBI algorithm in a non-
standard way (Section VI-C. We exploit the fact that the
MORRT maintains a data structure to keep track of visited
states, and feedback the visited states to the VBI algorithm.

The algorithm then infers the distribution that will bias the
sampling in favor of higher coverage of the state space.

The output of the learning phase is a mixture distribution
that combines both the goal and coverage distributions accord-
ing to ζ, a weight factor. ζ can be dialed up or down by the
user to reflect the extent to which he wants goal orientation
and/or high coverage in the generated tests. The purpose of
the simulation component is to simulate the MORRT. The
MORRT is a random tree grown in the state space of the
circuit. In each iteration, the next state to be simulated (node
of the tree) is generated from the mixture distribution. The
MORRT then finds the node of the tree nearest to the newly
sampled state and simulates an optimum trajectory path from
that node to the new state (Section V-C). If the goal regions
are reached, or the coverage goal is reached during simulation,
we invoke the final component.

The purpose of the input stimulus generation phase is to
extract a test from the MORRT simulations at a given state. We
extract the path from the initial state (the root of the MORRT)
towards the goal region (the leaf of the MORRT) by traversing
the tree (Section V-D).

IV. PRELIMINARIES

A. Models for Nonlinear Systems

A nonlinear time-variant circuit is modeled as a differential
algebraic equations (DAEs) through modified nodal analysis
(MNA) [33] of the circuit’s netlist. Let f and g denote the
piecewise continuous time-variant nonlinear function govern-
ing the dynamics of the circuit, and t ∈ [0,∞). Let S ⊆ Rn
denote the continuous state space of the circuit. Let h be the
piecewise continuous small perturbation function that results
from modeling errors, aging, or uncertainties and disturbances.
Let U ⊆ Rm denote the input space of the circuit. x denotes
the state variables, and u denotes the input variables of the
circuit. u(t) is a piecewise continuous input signal. x(t)
denotes the state of the circuit at time t. The initial state
of the circuit is x(0). The initial state should be explicitly
defined by the user; otherwise, it will be determined through
DC operating point analysis [33]. A nonlinear analog circuit is
described by an n-dimensional differential algebraic equation2:

ẋ = f(x(t),u(t), t) + h(x(t), t)

0 = g(x,u(t), t)

We consider that system as a perturbation of this nominal
system:

F (ẋ(t),x(t),u(t), t) = 0 (1)

A solution of the circuit in the time interval [t1; t2] is the
path taken by the circuit from state x(t1) to state x(t2). For a
given state x(t1) and input u(t1), the differential constraints in
Equation 1 determine the trajectory of the circuit in the interval
t ∈ [t1 t2]. For practical circuits, the solution of nonlinear
analog circuits can be computed using a numerical ODE/DAE
solver such as MATLAB or SPICE. Piecewise continuous
input u(t) models a wide variety of inputs like continuous

2In this paper, we use a bold character v for vectors and italic characters
vi for variables.
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Fig. 1: Framework of our directed input stimulus generation technique (Section III)
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Fig. 2: Growth of RRT through addition of a new node
sampled from the state space.

inputs (in analog circuits) and piecewise continuous inputs
(like analog interfaces such as DAC circuits). Equation 1
models transient parameter variations that are due to changes
in input u(t) and small perturbations in the circuit that result
in changes in h in Equation 1.

B. Rapidly-exploring Random Trees
We briefly describe the RRT algorithm presented in [24].

The RRT is a tree data structure. The tree is initialized through
fixing of its root at a specified state3 in the state space S. The
tree is then grown incrementally through addition of edges be-
tween existing nodes and the new state selected from the state
space. The selection of the new states determines the manner
in which the tree grows in the state space. Typically, the new
states are selected at random through uniform sampling of
the state space.

Let G be the RRT data structure. Each node of G corre-
sponds to a state in S, i.e., a unique set of values assigned

3Throughout this paper, point denotes a vector in Rn. The state is a physical
manifestation of the point in the state space S ⊂ Rn (with corresponding
scales and units). The region is a connected subset of the state space S.
Finally, a node is the state in the tree data structure (augmented with input
u(t), time annotation t, and possible pointers to other nodes).

to the state variables x. Each edge represents a solution of
the system from initial condition x for a given assignment of
values to the input variables u.

Algorithm 1 RRT algorithm using uniform sampling

1: G.init (x(0))
2: for i = 1→MAX − ITER do
3: qsample ← UniformSampling(S)
4: qnear ← FindNearestNodeInTree(S, qsample)
5: qnew ← FindOptimumTrajectory(qnear, qsample)
6: G.expand(qnew)
7: end for

Algorithm 1 describes the growth of the tree G in the classic
RRT algorithm [24]. At every iteration, the RRT algorithm
generates a random state qsample uniformly distributed in the
state space. For every new generated state qsample, the RRT
algorithm will find a nearest state, qnear, and will determine
which solution for any u ∈ U will bring node qnear closer
to the sampled state. The RRT determines the closest state by
simulating different circuit trajectories and selecting the opti-
mum one [23][20] based on Euclidean distance. That process
is called shooting. From the initial state qnear, the algorithm
will randomly sample the input space U and generate the
corresponding trajectory by shooting for a short time (∆t).
The algorithm will then select the optimal trajectory as the
trajectory that would result in the final state closest (based
on Euclidean distance) to the qsample. When the trajectory is
determined, the tree will be expanded from qnear toward qnew
through addition of the edge enew to the tree. The algorithm
stores the state q, time t, and trajectory u for each node in the
tree, so later an input stimulus can be reproduced using that
information. Figure 2 shows the growth of the RRT tree toward
a given sample node. The RRT algorithm will terminate after
a fixed number of iterations MAX − ITER.
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VBI algorithm.

C. Variational Bayesian Inference

In this section, we describe the variational Bayesian infer-
ence (VBI) algorithm [8]4. The VBI algorithm infers a mixture
distribution of the given set of samples. Let {x1, . . .xn}
denote a set of samples from an N -dimensional sample space.
We assume the samples are from an independent and identi-
cally distributed Gaussian mixture distribution with unknown
mean and variance. A mixture distribution is a distribution
who’s its density is the sum of a set of components. We
want to compute the mean, variance and the weight of the
components in the mixture distribution. The VBI algorithm
infers the distribution of samples xi as a mixture Gaussian
distribution of the form

K∑
i=1

πi N (µi,Λ
−1
i ) (2)

where K represents the number of Gaussian components N in
the mixture distribution with mean µi, and variance Λ−1

i (Λi
is the precision), and πi denotes the weight of each component
in the mixture.

An overview of the VBI algorithm is as follows. Variational
Bayes fits the samples to a mixture Gaussian distribution
(Equation 2) by iteratively computing and updating the pa-
rameters µi, Λ−1i , and πi for each of the K components in
the mixture. Let (latent variable) zij indicate whether a corre-
sponding sample xi belongs to component j in the mixture.
Let zi denote a vector of znk for k = 1 . . .K. Each row j in
zi corresponds to the probability that this sample belongs to
component j. So the zi is a one-of-K vector where one of the
elements, say j, is 1 (i.e. the sample zij probably belongs to
component j) and all other K − 1 elements are 0. Finally, let
Z = {z1, . . . , zn}. The variational Bayes models the variable
Z and the parameters mean µ, precision Λ, and mixture weight
π as random variables (where the mean follows a Gaussian
distribution, the precision follows a Wishart distribution, and
the mixture weight follows a Dirichlet distribution). We refer

4We only provide the inputs and assumptions that we used in this algorithm,
and we refer interested readers to [8] for more details on the algorithm.

our readers to [8] to drive the equations necessary to compute
the mean µ, precision Λ, and mixture weight π.

The conditional distribution of Z given the mixture weights
π, is

p(Z|π) =

n∏
i=1

K∏
j=1

π
zij

j . (3)

Additionally, the conditional distribution of the sampled
state given the latent variables is

p(X|Z, µ,Λ) =

n∏
i=1

K∏
j=1

N (xi|µj ,Λ−1
j )zij , (4)

where µ = {µk} are the means of the components of the
distribution and Λ = {Λk} are the precisions. The covariance
matrix will be computed by inverting the precision matrix Λ.

We assume a Dirichlet [8] distribution for mixture weights
π:

p(π) = Dir(π|α0) = C(α0)

K∏
i=1

πα0−1
i (5)

where C(α0) is the normalization constant for Dirichlet dis-
tribution [8]. For mean and precision, we assume a Gaussian-
Wishart [8] prior distribution, as follows:

p(µ,Λ) = p(µ|Λ)p(Λ) (6)

=

K∏
i=1

N (µi|m0, (β0Λi)
−1)W(Λi|W0, v0),(7)

In [8], the responsibilities rnk are modeled and computed as
the expectations of the random variable znk. Therefore, com-
puting the exact solution is difficult. The algorithm assumes
that the variational distribution can be factorized between
the variable Z and the parameters mean µ, precision Λ, and
mixture weight π and approximates the mixture distribution.
The joint distribution of all random variables is

p(X,Z, π, µ,Λ) = p(X|Z, µ,Λ)p(Z|π)p(π)p(µ|Λ)p(Λ)
(8)

Where X is the set of samples and Z is the latent variable.
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We assume that variational distribution factorizes between the
latent variables and parameters such that

q(Z, π, µ,Λ) = q(Z)q(π, µ,Λ) (9)

In order to compute the mean vector and precision vector of
the mixture distribution, the algorithm iteratively alternates be-
tween two steps: i) computing the responsibility (expectations)
of each cluster in explaining the samples, and ii) using the
responsibilities to update the distribution parameters in order
to maximize expectations. The algorithm iterates between the
two steps until the distribution converges. The output of the
algorithm is the mean µ, the precision Λ, and the weight
mixture π of the mixture distribution (Equation 2). Further
details of this technique can be found in [8]. Variational Bayes
computes the mixture weights as πi = 1

n

∑n
j=1 rji where

rij are responsibilities of each sample with respect to each
component in the distribution [8]. The responsibilities and
weight coefficients of components that provide inadequate ex-
planation of the samples will converge to zero. Therefore, after
convergence, components with negligible mixture weights are
discarded. As a result, the technique does not require prior
information that specifies the exact number of components in
the mixture distribution. In [8], this feature is referred to as
automatic relevance determination.

An advantage of VBI over other clustering or inference
algorithms is that the number of components K does not
need to be known a priori. The VBI algorithm computes
the number of components K automatically. Furthermore,
the algorithm does not require prior information and uses
conjugate priors to approximate the prior distribution using
its parameters. The VBI approximates the computationally
expensive integral that arises in the Bayesian inference by
factorizing the prior distribution; therefore, the VBI algorithm
is very fast. Although the VBI is very fast, the inference results
are as accurate as those of other Monte Carlo Markov chain
methods, such as Gibbs sampling for Bayesian networks [8].
Finally, the VBI algorithm can be implemented online. As
a result, the algorithm can compute and update the sample
distribution incrementally [34].

V. PROPOSED DIRECTED INPUT STIMULUS GENERATION
ALGORITHM: MULTI-OBJECTIVE RRT

The details of our Multi-Objective RRT algorithm are
explained in Algorithm 2. The MORRT algorithm generates
biased states from a distribution M which is a mixture of
two distributions: the goal distribution G and the coverage
distribution H. The mixture distribution M is defined as:

M = (1− ζ)×H + ζ ×G. (10)

Where G, H and M are the CDF of the goal, coverage and
MORRT sampling distributions. The primary input to the
algorithm is a mixture weight parameter ζ such that 0 ≤ ζ ≤ 1,
which tunes the algorithm between the two objectives. A
higher ζ causes more states to be generated from the goal
distribution G. Higher ζ biases our algorithm to be more
directed toward the goal-oriented traces. On the other hand,
a lower ζ generates more states from coverage distribution H
and increases the coverage of our algorithm in the reachable
state space. The other inputs to the algorithm are the state

Algorithm 2 Multi-Objective RRT algorithm

1: ζ: Mixture weight parameter
2: Goal distribution G: Mixture Gaussian distribution of the

goal states
3: Coverage distribution H: Mixture Gaussian distribution of

the visited states in MORRT
4: Sampling distribution M: Mixture Gaussian distribution of

the goal (G) and coverage (H) distributions.
5: MAX − ITER: Maximum iteration of the algorithm
6: {g1 . . . gl} = training observations
7: G← Variational Bayesian inference (gi)
8: M← G
9: RRT.init (x(0))

10: for i = 1→MAX − ITER do
11: qgoal ← Generate a random state from M
12: qnear ← Find nearest node in the MORRT (S, qgoal)
13: qnew ← Find optimum trajectory (qnear, qgoal)
14: RRT.expand (qnew)
15: H← Variational Bayesian inference (MORRT)
16: M← Gaussian mixture distribution (G,H, ζ)
17: end for
18: return input stimuli from MORRT

space S, the input space U, and the initial condition x(0) of
the circuit. The outputs of the algorithm are the MORRT data
structure and a set of input stimuli that drive the circuit from
the given initial conditions (x(0)) to the goal region.

For simplicity, first we explain the case where ζ = 1 and
the algorithm is purely goal-oriented, as in [7]. In this case,
the goal states {g1, . . . , gl} are provided by the users. If the
user does not know the goal region, we generate a few training
states using a uniform distribution over the entire state space.
We simulate the training states and record the terminating
states as goal states {g1, . . . , gl} (Algorithm 2, line 6). We
determine the Gaussian mixture distribution of the goal states
G using the VBI algorithm (Algorithm 2, line 7).

In the simulation phase (Algorithm 2, lines 10 − 17), we
grow the MORRT in the state space. We draw states from the
Gaussian mixture distribution M. Since ζ = 1, the algorithm
is purely goal-oriented, and M = G. Much as in the classic
RRT algorithm (Algorithm 1), we grow the MORRT by finding
the node nearest to the sampled state and then finding the
optimum trajectory from that node toward the sampled state.
After the fixed number of iterations MAX − ITER, we
exit the exploration phase, and then we generate input stimuli
from the MORRT (Algorithm 2, line 18). We generate stimuli
for the circuit by analyzing the MORRT data structure. Each
stimulus can be used to drive the circuit from a given initial
state to the goal region that we identified in the state space
(Section V-D).

Now, if ζ < 1, we have to balance the goal objective
with coverage. The sampling distribution M is a mixture
Gaussian distribution of the distribution of the goal states and
the MORRT states. The mixture weight in distribution M is
proportional to ζG and (1 − ζ)H. To compute the sampling
distribution M, we perform the learning phase to identify goal
distribution G, and then we let M = G. Initially, we let M = G
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since the MORRT does not yet exist (Algorithm 2, line 8).
As the algorithm iterates, the MORRT grows to explore the
reachable state space. We update M at every iteration using
the feedback from the states visited thus far by the MORRT
(Algorithm 2, line 16).

Each state x1, . . . , xn in the MORRT is visited state that is
reachable from the initial state. At each iteration, we update the
distribution of the MORRT states H using the VBI algorithm
(Algorithm 2, line 15). After updating the distribution H,
we update the sampling distribution M based on the mixture
weight ζ. If ζ is closer to 1, it means that M will be closer to G,
making the algorithm more goal-oriented. A low ζ means that
M will be closer to the distribution H, making the algorithm
generate more states in the already-visited regions of the state
space to increase the coverage.

A. Inferring the Goal and Coverage Distributions

We utilize the variational Bayesian inference (VBI) (Section
IV-C), [8] algorithm to determine the distribution of the
goal states and visited states (MORRT states) in the learning
phase of the MORRT algorithm (Figure 3). In the learning
phase, we compute the distribution of the goal states from
the training data {g1, . . . , gl} (Figure 3, block 2). As the
MORRT algorithm explores the state space, we compute the
distribution of the reached state space from the MORRT nodes
{x1, . . . , xn} (Figure 3, block 4).

1) Identifying the Distribution of Goal States G: We infer
the goal distribution from the goal states. The goal states are
states from the goal region. The goal observations can be
directly provided by the user. In case user already knows the
goal region in the state space, he can manually generate states
around that goal region and use them as goal observations.
The goal states does not have to be a solution of the circuit or
even reachable. MORRT will find an input stimuli that drives
the circuit from the initial state toward those goal states. In
practice, occasionally the user is unable to provide the goal
states or generating goal states might be labor-intensive. In
case that the user does not provide the goal observations, our
algorithm samples the state space of the circuit by performing
a limited number of training simulations. In each simulation,
we generate a random initial state as well as the duration of
the simulation from a uniform distribution. At the termination
of each simulation, we record the final state of the simulation.
We refer to these terminating simulation states as goal states.
We use the concentration of the goal states as a measure of
the importance of a region. We assume that the distribution of
the goal observations is Gaussian around the goal region.

The VBI algorithm will determine the optimum number
of goal regions that provides the best explanation of the
goal states by optimizing the mixing coefficient (Equation 2).
We have no prior information about the distribution of the
goal states. We set the mean to the mean of goal states and
set the variance to 1, as the initial values to the algorithm.
Distribution of the goal states is computed only once, and
after the learning phase it remains constant. The VBI algorithm
computes the mean and variance of the distribution. On conver-
gence, the output of the algorithm consists of four parameters:
µG,ΛG,πG, and number of components, KG. We compute

the mixture Gaussian distribution as a goal distribution using
Equation 2:

G(µG,ΛG) =

KG∑
i=1

πGi
N (µGi

,Λ−1
Gi

) (11)

2) Infer the Coverage Distribution H: As the MORRT
algorithm explores the reachable state space, it provides very
accurate snapshot of the reachable state space. Each MORRT
node is a visited state in the state space that is reachable from
the initial state. After adding each new state to the MORRT,
we compute the mean and variance of the distribution of the
MORRT states. After the VBI algorithm converges, the output
of the algorithm consists of four parameters, µH,ΛH, and
πH, and the number of components, KH. We compute the
mixture Gaussian distribution as a coverage distribution using
(Equation 2):

H(µH,ΛH,πH) =

KH∑
i=1

πHi
N (µHi

,Λ−1
Hi

) (12)

Unlike the goal distribution, G that is fixed throughout the
growth of the MORRT, at each iteration the coverage distribu-
tion, H evolves as the MORRT explores the state space. There-
fore the number of components and the mixture distribution
itself are dynamic, whereas the goal distribution is static and
does not change throughout the algorithm. Mixture distribution
M gets updated because of H at every iteration.

B. Biasing towards Objectives
The most important part of the MORRT algorithm is

generation of the biased states (Figure 3 - block 3). In our
algorithm, we bias the states toward the distribution of the
goal region or the reachable space according to the parameter
ζ. The goal distribution and the coverage distribution are the
mixture Gaussian distribution G and the H determined by the
VBI algorithm (Equations 11 and 12). The biased mixture
distribution is a mixture of the goal and coverage distributions
proportional to the weight parameter ζ:

M(x) = (1−ζ)×H(µH,ΛH,πH)+ζ×G(µG,ΛG,πG). (13)

As a result of our weight mixture, if the user specifies ζ = 0,
then the biased distribution M is the same as the coverage
distribution, and our algorithm is completely coverage-driven.
Similarly, if the user specifies ζ = 1, then the biased distribu-
tion M is equal to the goal distribution G, and our algorithm
is completely goal-oriented. Our algorithm will mix the goal
distribution and coverage distribution according to the weight
mixture ζ. We study different choices of ζ in the experimental
results section. We consider only finite mixture models. Note
that although G is independent of ζ, H is dependent on ζ.
However, since ζ is constant throughout the algorithm, we
ignore it in the inference of the coverage distribution.

C. MO-RRT based circuit simulation
We grow the MORRT in the simulation phase of the

algorithm to explore the state space. At every iteration, we
generate a state from the mixture distribution of the goal
and coverage distributions. We find the nearest node in the
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(a) The state space of the Josephson circuit. The
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Fig. 4: An example of the input stimuli generated for the Josephson circuit (Section VI-A) from the MORRT. Generating input
stimulus for Josephson circuit is difficult using conventional Monte Carlo methods.

MORRT from the sampled state. The nearest node is computed
according to the Euclidean distance between nodes. Next,
we determine the optimum trajectory from the nearest node
towards the sampled state. Each trajectory is an assignment
to the circuits inputs from the nearest node. We randomly
sample different inputs and pick the one that takes us closer
to the sampled state. Finally we simulate the circuit from the
nearest node using the optimum trajectory for the simulation
time ∆t. We add the result of the simulation as a new node
to the MORRT and continue.

Generating a state from the mixture distribution and picking
a nearest node provides a global direction in the MORRT.
Therefore when more states are generated from the goal
distribution, the growth of the MORRT is biased toward the
goal regions. Similarly, picking an optimum trajectory gives a
local direction to the MORRT.

D. Extracting Input Stimuli from MORRT

Each leaf in the MORRT corresponds to an input stimulus.
The algorithm will record each input u(t) used in each edge
of the MORRT on the edge. For each leaf we can extract the
unique input sequence that drives the circuit from the initial
state (root of the MORRT) to that leaf. To generate a stimulus,
we select the desired circuit states as our targets and choose the
appropriate target node (qtarget) in the tree that is inside our
target regions. We extract a (unique) path between the target
node and a root of the tree (the initial state). By traversing
that path in reverse, we can generate the input sequence u(t)
that would take us from the initial state (qroot) to our desired
state (qtarget). An example input stimulus and corresponding
trace are shown in Figure 6c.

Figure 4a shows the state space of the Josephson circuit
(explained in Section VI-A) where the initial state is selected
at state (−2.6, 0). If we use nominal inputs, the circuit will

end up in the state at equilibrium state (0,−6), which results
in the output trace shown in Figure 4b. However, if we use
Multi-Objective RRT, we can explore alternative goal regions
and obtain different results (Figure 4a). MORRT can explore
other goal regions around equilibrium states (0, 0) and (0, 6).
After the MORRT reaches a state in the goal region, we can
extract an input stimulus by traversing the path from that state
toward the root of the RRT. Finally, we can obtain the input
sequences (Figures 4c and 4d) and report them to the user as
input stimuli.

VI. EXPERIMENTAL RESULTS

We developed a prototype tool to evaluate the accuracy and
efficiency of our algorithm. The tool's input is the circuit
netlist in SPICE format. We perform the modified nodal
analysis to obtain the DAE model (Equation 1) for the netlist.
Next, we construct the MORRT data structure and grow the
RRT in the state space of the circuit according to Algorithm
2. We utilize MATLAB’s ode45 and the Synopsys HSPICE
numerical ODE/DAE solver to simulate the circuit and obtain
the optimum trajectories.

We applied our algorithm to two nonlinear systems- a
Josephson junction circuit with complex and nonlinear dynam-
ics (Section VI-A); and a CMOS opamp circuit 8-dimensional
state space (Section VI-D). In Josephson circuit, we show how
we tuned the bias of our algorithm from goal-orientedness
to high coverage. We compared our algorithm against Monte
Carlo simulation for generating directed tests and coverage
criteria. For the op-amp circuit, we showed how our tech-
nique can be used in practical situations for generating stress
and/or functional tests. Furthermore, we showed that the auto-
generated directed tests are shorter and more efficient than
manually-generated tests.
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Fig. 5: Josephson junction circuit.

A. Effects of ζ on Growth of the MORRT

The Josephson junction circuit is shown in Figure 5. The
Josephson junction is a time-invariant nonlinear inductor gov-
erned by Equation 14. As before, we set ∆t = 0.1. We
executed the classic RRT algorithm for 3,000 iterations. We
executed Multi-Objective RRT algorithm for total of 3,000
iterations (including 2700 iterations for growing the RRT and
300 training iterations) for various choices of ζ.

iL = I0 × sin(kΦL) (14)

Therefore, the differential system for the circuit in Figure 5
is

v̇c =
1

C
(

1

R
vc − I0sin(kΦL) + is(t)) (15)

Φ̇L = vc (16)

where I0 = 1, R = 4, and C = 1. The inputs of the circuit are
the current source (is(t)) and the variation in ΦL(∆Φ), which
are both within the range of [−0.1, 0.1].

Figure 6 shows the results of the MORRT algorithm versus
the classic RRT algorithm. The initial state of the circuit
was chosen at state (-1,3). We identified regions around the
state (0,0) as our goal regions; the algorithm thus guided
the tree toward the state (0,0) and generated many traces
toward that state. As shown in Figure 6, in MORRT, the
algorithm did not waste any states in the irrelevant regions
and quickly converged directly towards the goal state (0,0).
On the other hand, in classic RRT, the algorithm spent a lot
of its states in uninteresting regions and eventually did not
converge toward the goal state (0,0). Figure 6 also shows
the correlation between the mixture weight parameter ζ and
the growth of the MORRT. When ζ was relatively low, the
algorithm spent a lot of states inside the reachable state space
to increase the coverage. However, as ζ increased, the MORRT
grew toward the goal regions. As we show later in Section VI-
C, we observed that setting ζ = 0.5 yielded the best trade-off
between coverage and concentration of tests around the goal
regions.

B. Performance comparison of MORRT vs Monte Carlo

To evaluate the performance of our algorithm against Monte
Carlo, we performed two experiments. We used the Josephson
case study used in Section VI-A. The initial state was selected
at state (−2.6, 0) (similar to Section V-D Figure 4a). The goal
region was selected within 0.5−ball around the stable equilib-
rium state (0, 0). Each Monte Carlo simulation simulates the
circuit for t = 2.5 s and takes 250 iterations. Similar to Monte

Carlo, we set ∆t = 0.1 in MORRT algorithm. We performed
two experiments:

1) Experiment I: We ran both MORRT and M.C. for
3,000 iterations. We reported total execution time and
the number of relevant tests in each case.

2) Experiment II: We ran both MORRT and M.C. algo-
rithms until finding 30 goal-oriented test stimuli ending
within the 0.5−ball around the equilibrium state (0, 0).
We reported total execution time and total iterations in
each case.

Experiment I: Running both
algorithm for 3,000 iterations

MORRT Monte Carlo
Number of goal input stimuli 487 0
Total execution time 9.66 sec 7.47 sec

Experiment II: Running both
algorithm until finding 30 goal input stimuli

MORRT Monte Carlo
Total iterations 1248 249250
Total execution time 3.57 sec 672.13 sec

TABLE I: Performance comparison of MORRT vs M.C.

Table I shows the result of the performance comparison.
Given the same number of iterations, Monte Carlo was 22.6%
faster than our algorithm. However, MC didn’t find any goal
input stimuli, whereas our algorithm was able to generate 487
input stimuli directed toward the goal region. This experiment
demonstrates that performance overhead of our algorithm w.r.t
the Monte Carlo simulation is as low as 22.6%.

On the other hand, for generating 30 goal input stimuli, we
performed significantly better than the Monte Carlo. It takes
the random Monte Carlo simulations 199× more iterations
and 188× more time to generate 30 goal input stimuli, as
compared to our directed approach.

C. Measuring Coverage and Goal-Orientedness
We used a quantitative approach to measure coverage

and goal-orientedness to evaluate our algorithm. For goal-
orientedness, we measured the number of traces generated
in the vicinity of the goal region. For coverage, we used a
discrepancy metric to measure how much the visited states
were equi-distributed in the reachable state space.

To evaluate the coverage of the MORRT algorithm, we
measured the discrepancy of the nodes in the MORRT. We
used the star discrepancy [10][23] to compute the discrepancy.
The star discrepancy has previously been used by [23] to
guide and bias the RRT algorithm. In analog circuits, classic
measures of computing coverage, such as branch coverage or
path coverage, are not applicable, because of the continuous
dynamics of the analog circuits. On the other hand, geometric
discrepancy measures can express how well the states are
equi-distributed in the reachable state space or around the
goal regions. The star discrepancy measures the uniformity
of the distribution of a state within a region. We relate a high
coverage with uniformity of a state’s distribution inside the
reachable state space.
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(a) Classic RRT.
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(b) The MORRT algorithm
(ζ = 0).
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(c) The MORRT algorithm
(ζ = 0.1).

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−2

−1

0

1

2

3

v
c

Φ
L

(d) The MORRT algorithm
(ζ = 0.3).
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(e) The MORRT algorithm
(ζ = 0.5).
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(f) The MORRT algorithm
(ζ = 0.9).
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(g) The MORRT algorithm
(ζ = 1.0).
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(h) Trace extracted from our
goal-oriented algorithm.

Fig. 6: Exploring the state space of a Josephson junction circuit using the classic RRT and MORRT. Figure 6a shows the
classic RRT algorithm; for the given number of iterations (3,000), the algorithm did not converge. Figures 6b to 6g show the
various MORRT results for different increasing values of ζ. Finally, Figure 6h shows a trace extracted from our algorithm. For
the same number of iterations, the MORRT algorithm will converge faster and provide more coverage of the region around
the equilibrium state (0,0).

Let P denote the state set {x1, . . . , xn} inside the k-
dimensional unit cube B = [0, 1)k. Let I∗ be the class of all k-
dimensional sub-intervals I of B of the form I =

∏k
i=1[0, βi]

such that 0 ≤ βi ≤ 1. The local discrepancy is defined as

D(P, I) ≡
∣∣A(P, I)

k
− V ol(I)

∣∣ (17)

where A(P, I) is the number of states of P that are inside
I and V ol(I) is the volume of the sub-interval I . The star
discrepancy is the supremum of all local discrepancies. The
star discrepancy [10][23] of the state set P in the box B is
defined as

D∗(P,B) ≡ sup
i∈I

D(P, i). (18)

The term star reflects the fact that every sub-interval in I∗ has
a vertex at the origin.

The range of the star discrepancy is the set (0, 1], where
low discrepancy means a more uniform set and a higher
discrepancy indicates greater nonuniformity. In general, gen-
erating a low-discrepancy random sequence is very difficult.
We estimated the coverage of the MORRT algorithm with
respect to the mixture weight ζ. We used the results from
the Josephson junction circuit. To estimate the coverage, we
set the box B equal to the interval [−1.5,−1.3]×[1.5, 1.7] and
we computed the star discrepancy of RRT states inside B. To
measure goal-orientedness, we set the box G at [−0.1, 0.1]×
[−0.1, 0.1] (the goal region), and we counted the number of
MORRT nodes inside B. Figure 7 shows the discrepancy and
goal-orientedness results of the MORRT algorithm. Figure 7a
gives the goal-orientedness of our algorithm w.r.t. parameter
ζ. In the MORRT, we can extract one trace for each state
in the goal region. As shown in Figure 7a, as we increase
the ζ, we bias the growth of the MORRT toward the goal

region (in this case, the origin state). The results in Figure
7a are confirmed by the results in Figure 6. The increase
in the number of states around the origin indicates that our
algorithm is more goal-oriented as ζ increases. Figure 7a
clearly shows the correlation between the mixture weight
ζ and the number of goal traces. Figure 7b illustrates the
coverage of our algorithm w.r.t. parameter ζ. As the figure
clearly shows, increasing ζ will cause the discrepancy in the
box [−1.5,−1.3]×[1.5, 1.7] to increase. Increased discrepancy
indicates less uniformity and less coverage. Therefore, when
we use a lower ζ, we achieve a lower discrepancy (in the range
of [0.3, 0.5]). Moreover, Figure 7b shows that if ζ is increased
(i.e., our algorithm is more goal-oriented), the MORRT will
be grown toward the goal region, and we will have more states
inside the goal region. Therefore, our generated input stimuli
will be more goal-oriented. Based on Figure 7, we recommend
an optimum value for ζ that yields an acceptable degree of
coverage and goal-orientedness. Our general recommendation
is that ζ be set to 0.5. However, depending on the application,
the user can choose a higher or lower value for ζ to customize
the algorithm.

D. Generating input stimuli for CMOS operational amplifier
circuit

In this section, we demonstrate how MO-RRTs is used
in practical situations. We used a 2-stage CMOS operational
amplifier integrator circuit, as shown in Figure 8, to show
practicality and scalability of our algorithm. We used this
opamp in a voltage divider configuration with unity gain. The
opamp was designed in 0.18um library. We sat V DD =
−V SS = 0.9v. Each test was applied to the Vin signal.
The output of the opamp was saturating at 0.2v and −0.8v,
respectively.
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(a) Number of goal traces with respect to ζ.
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(b) Star discrepancy with respect to ζ.

Fig. 7: Effects of ζ on discrepancy and number of states in
MORRT.

We used Synopsys HSPICE to simulate the circuit. The
input to our tool was the op-amp netlist in HSPICE for-
mat. The output of the tool was a PWL signal that
could be used as an input stimuli to the Vin voltage
source. The state space consists of the following variables
{vcap, vdd, vi, vinn, vinp, vo, vss, vw, vx, vy, vz, vw, t} ∈ R12,1

(Figure 8). We ran each experiment for 10,000 iterations. Each
iteration consisted of a small HSPICE simulation for duration
of dt = 10µs. Each experiment took approximately 15 minutes
to be completed on a Core-i5 machine equipped with 16GB of
memory. In order to analyze the time-variant op-amp circuit,
we augmented each state in the MORRT with time notation
[6]. The root of was time-annotated with zero. For each other
state, the time annotation was the time of the parent node plus
the duration of the transient simulation from the parent to the
state.

We used our tool to generate three types of input stimuli:
i) functional tests, where the objective was to reach a specific
region (namely, the saturated outputs) in the state space, ii)
stress tests, where the objective was to put as much current or
voltage through circuit components or nodes as possible, and
iii) combining different input stimuli together.

1) Generating functional tests: We generated a test that
would saturate the output of the opamp circuit. We manually
generated random vector where vo = 0.2v and vo = −0.8v
to learn the goal region. It is not required for the training
observations to be simulated or even reachable. We used those
states as a training observations, effectively bypassing the
Monte Carlo simulation step (Fig. 3 block 1) in our algorithm.
Next, we used our learning algorithm to identify the goal
region from these states and to compute the goal distribution.
Finally, we used the MORRT to generate input stimuli that

Fig. 8: Schematic of the opamp circuit.

could saturate the outputs of the circuit at 0.2v and −0.8v.
We ran the algorithm twice to reach the output voltage 0.2v
and −0.8v. Figure 10a shows the output of the circuit when
the MORRT was directed toward saturating the output at 0.2v.
We extracted multiple input stimuli from the MO-RRT that
saturates the output voltage. As long as the goal region is
reachable, the MO-RRT algorithm can effectively find an input
stimuli that directs the circuit toward the goal region. We
observed that the length of the input stimuli generated by MO-
RRT are very compact and efficient.

2) Generating stress tests: We used our algorithm to gen-
erate stress tests for different components on the circuit. For
stress testing the components, initially we computed a ”profile”
for each node in the circuit. We applied the input signal vsquare
as shown in the Figure 9a to compute the minimum and
maximum value of the current through the resistor. Figure 9b
shows the voltage vx and the current through resistor R1 =
2.1kΩ. The maximum current through R1 is determined to be
0.57mA(= vx−vss

R1
). Next, we applied the MO-RRT algorithm

and biased the growth of the tree towards the region with max-
imum current where iR1 = 0.6mA. For the given resistor R1

in the circuit, the objective of the algorithm was to put as much
as 0.6mA current through that resistor. Our algorithm selected
the plane iR1 = 0.6mA as the goal region and generated
tests that would reach that region. Figure 9c shows the result.
Our algorithm was able to compute several input signals that
would stress the resistor R1 to its maximum allowed current.
The automated generated tests requires 4us to finish, where
as the manually generated test by the designer requires 200us
to finish. Furthermore, the input stimuli determined by our
technique was shorter and more efficient that the profile signal.
We repeated the same experiments for all other nodes in the
circuit and successfully reached the goal objectives using MO-
RRT.

3) Combining multiple input stimuli: Finally, we used the
MO-RRT algorithm to combine different test stimuli. We
wanted to find a test that saturates the output voltage vo at
0.2v and stresses the resistor Rc by maximizing the voltage
vx. Figure 10a shows the MORRT G1 that is used to generate
tests for saturating the output voltage. Similarly, we computed
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(a) The input signal to generate signal
profile

(b) The current profile of the resistor R1 (c) The MORRT algorithm generates a
stress tests for resistor R1.

Fig. 9: Generating tests for stressing the resister R1

(a) The MO-RRT generates a test that
saturates the output at 0.2v.

(b) The voltage vx in the MO-RRT of the
combined tests for saturating output vo and
stressing resistor Rc.

(c) Extracting tests from the MO-RRT that
saturates the output and maximizes the
current through Rc.

Fig. 10: Combining different tests. The MO-RRT can learn the goal regions from two given test sets and generate a combined
tests that simultaneously reaches both goal regions.

vbug

vout

(a) Schematic of the introduced bug in the
opamp circuit.

(b) The input stimulus generated by the
MORRT that excites the bug in the opamp
design.

(c) The erroneous output of the opamp.

Fig. 11: Combining different tests. The MO-RRT can learn the goal regions from two given test sets and generate a combined
tests that simultaneously reaches both goal regions.

another MORRT G2 that maximizes the voltage vx and
stresses the resistor Rc. The MO-RRT G1 can be used to
generate tests that stresses Rc (and vise versa) but it is not
efficient because most of the states do not reach maximum
current through Rc.

The objective of the experiment was to learn the goal
regions from G1 and G2 and generate a new MO-RRT that can
simultaneously reach both goal regions. We are only interested
in the dimensions of the vo and vx. First we collected the
terminating states in MO-RRT G1 and G2. We generated a new
set of learning states from those terminating states where the
output voltage was obtained from G1 and the vx was obtained
from G2. We computed a new goal distribution from the
learning states. The goal distribution is a Normal distribution
with the mean (vo, vx) = (0.2, 0.3). We grow the MO-RRT
toward the goal region (0.2, 0.3v). Figure 10b shows the MO-
RRT toward the combined goal regions. In comparison to the

previous result, the MO-RRT for the combined goal region
explored both goal regions simultaneously and combined the
two test sets. Figure 10c shows the extracted tests from the
combined MO-RRT that saturates the output and stresses
resistor Rc.

4) Finding design bugs in the opamp: In order to show
how MORRT can be used to find bugs in the circuit design,
we intentionally introduced a bug into the opamp design. We
emulated a bug by adding a small voltage limiter subcircuit to
the opamp circuit as shown in Figure 11a. We connected the
output of the voltage limiter to the second differential input of
the opamp at vinn node (This node was initially grounded).
Using this circuit, when the vbug increases more than 0.5v,
the transistor turns on and increases the voltage of the node
vinn. There were two inputs to the circuit: the input signal vin
and the second faulty input vbug .

To excite the bug, we searched for combination of input
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signal that resulted a in positive vinn (Normally this signal
was grounded). We set the vinn = 0.5 as the goal objective
and executed the MORRT for 1,000 iterations (1 minute). The
MORRT algorithm successfully found multiple stimuli ending
in the region where vinn = 0.5. Each stimulus resulted in the
erroneous output in the opamp. Figure 11b and 11c shows the
input stimulus vbug and corresponding output of the opamp,
respectively. The spike in the opamp’s output was caused by
reaching the goal region in the input stimuli.

E. Generating input stimuli for Voltage Controlled Oscillator
circuit

Voltage controlled oscillators (VCO) are widely used in RF
circuits, frequency synthesizers and phased-locked loops. We
generated input stimuli for a post-layout 1 GHz VCO circuit
in TSMC-0.18um process, shown in Figure 13a, to validate its
functionality and interface. The netlist was extracted from the
VCO layout with all the parasitic capacitance and resistors.
Figure 13b shows the oscillation of the VCO circuit where
Vbias = 750mv, Vcontrol = 630mv and Vdd = 1.8v. It takes
10.8ns for the output to reach its peak-to-peak maximum. The
output oscillates between 0.7v and 1.34v.

We defined three transient inputs to the circuit (0 ≤ Vbias ≤
1, 0 ≤ Vcontrol ≤ 1 and 1.8 ≤ Vdd ≤ 2) to model transient
input and power noise in the circuit. We executed the MORRT
for 20,000 iterations (60 minutes). We used the MORRT to
generate input stimuli for the following tests:
• Reaching the maximum output voltage (1.34v) as soon

as possible without oscillating. This stimulus is useful
to check the peak-to-peak swing of the VCO circuit.
Figure 13c shows the result of the experiment. The
MORRT successfully generated stimuli that drives the
output voltage to 1.3v.

• Stimuli for cutting off the output voltage. In order to
cut-off the output, we selected the output at 0v as our
goal region and ran the MORRT. Note the vout = 0
was not included in the initial output swing of the VCO
circuit. The MORRT was able to find many stimuli that
minimized the output as low as 0.05v. There are always
small leakage current and capacitive charge that prevents
the output to become 0. The length of the test was 0.65ns.

F. Complexity Analysis
In the classic RRT algorithm (and MORRT), the most

computationally expensive part of the algorithm is the search
for the nearest node in the tree. If the exhaustive search
method is used, the complexity of the algorithm is O(dn2),
where n is the number of states and d is the number of
dimensions. The RRT can be optimally constructed using the
KD-Tree data structure [24], which is very similar to a binary
search algorithm for high-dimensional spaces. The KD-tree
reduces the complexity of the search operation to O(d log n).
Therefore, the algorithm has a computational complexity of
O(dn× log n).

In our approach, there is a learning phase for identification
of relevant regions; We used the VBI algorithm to infer the
goal distribution and coverage distribution. In our learning
phase, we use l states. The number of learning states is limited

Fig. 12: Schematic of the VCO circuit.

and fixed in advance (l << k); hence it does not impose any
computational complexity on the algorithm. The complexity
of generating states from the distribution is O(k); therefore,
the complexity of our algorithm is:

O(l) +O(k) +O(dk × log k) = O(dk × log k). (19)

In conclusion, we presented a novel pre-silicon directed
input stimulus generation algorithm for nonlinear analog cir-
cuits that use a Multi-Objective RRT algorithm. The proposed
Multi-Objective MORRT algorithm quickly converges toward
the goal regions and provides high coverage. Our algorithm
is useful for generating goal-oriented and high coverage input
stimulus for analog circuits in order to check their functionality
during the design process.
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